Noncirculant Toeplitz Matrices All of Whose Powers Are Toeplitz

نویسندگان

  • Kent Griffin
  • Jeffrey L. Stuart
  • Michael J. Tsatsomeros
چکیده

Let a, b and c be fixed complex numbers. Let Mn(a, b, c) be the n×n Toeplitz matrix all of whose entries above the diagonal are a, all of whose entries below the diagonal are b, and all of whose entries on the diagonal are c. For 1 6 k 6 n, each k × k principal minor of Mn(a, b, c) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of Mn(a, b, c). We also show that all complex polynomials in Mn(a, b, c) are Toeplitz matrices. In particular, the inverse of Mn(a, b, c) is a Toeplitz matrix when it exists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

Toeplitz Block Matrices in Compressed Sensing

Recent work in compressed sensing theory shows that n×N independent and identically distributed (IID) sensing matrices whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if n N . Motivated by signal processing applications, random filtering with Toeplitz sensing matrices whose elements are drawn fro...

متن کامل

Localization of the Eigenvalues of Toeplitz

This paper explores the relationship between Toeplitz and circulant matrices. Upper and lower bounds for all eigenvalues of hermitian Toeplitz matrices are given, capitalizing on the possibility of embedding a Toeplitz matrix in a circulant, and of expressing any nn Toeplitz matrix as a sum of two matrices with known eigenvalues. The bounds can be simultaneously found using a single discrete Fo...

متن کامل

Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel ‎Kernel

‎The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the ‎method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008